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ABSTRACT

A decades-long effort in observing precipitation from space has led to continuous improvements of

satellite-derived passive microwave (PMW) large-scale precipitation products. However, due to a limited

ability to relate observed radiometric signatures to precipitation type (convective and stratiform) and asso-

ciated precipitation rate variability, PMW retrievals are prone to large systematic errors at instantaneous

scales. The present study explores the use of deep learning approach in extracting the information content

from PMW observation vectors to help identify precipitation types. A deep learning neural network model

(DNN) is developed to retrieve the convective type in precipitating systems from PMW observations. A

12-month period of Global Precipitation Measurement mission Microwave Imager (GMI) observations is

used as a dataset for model development and verification. The proposed DNN model is shown to accurately

predict precipitation types for 85% of total precipitation volume. The model reduces precipitation rate bias

associated with convective and stratiform precipitation in the GPM operational algorithm by a factor of 2

while preserving the correlation with reference precipitation rates, and is insensitive to surface type vari-

ability. Based on comparisons against currently used convective schemes, it is concluded that the neural

network approach has the potential to address regime-specific PMW satellite precipitation biases affecting

GPM operations.

1. Introduction and motivation

Variability in precipitation typology affects vertical wa-

ter and energy fluxes though the associated precipitation

structure, dynamics, microphysical processes, and latent

heat release. The distribution of convective and stratiform

precipitation impacts Earth’s radiative properties and

atmospheric circulation. While the differences in mi-

crophysical processes and dynamics in convective and

stratiform systems are well documented in the litera-

ture (e.g., Houze 1997), distinguishing between them

remains a major challenge for remote sensing. A lack

of measurements of updraft speed prevents a direct

identification of precipitation types, which in turn

hampers the interpretation of remotely sensed storm

properties. Inaccurate understanding of hydrometeorCorresponding author: Veljko Petković, veljko@umd.edu
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distribution and evolution throughout the precipitating

column ultimately affects the quality of precipitation rate

estimates at the surface from both active and passive re-

mote sensing observations. This challenge is especially

pronounced in satellite observations.

Since the first spaceborne passive microwave in-

struments were launched in early 1970s, satellite pre-

cipitation retrievals have exploited the link between

upwelling radiation and state of atmospheric column.

Leveraging decades of ever-improving algorithms,

coverage, and data latency, the Global Precipitation

Measurement (GPM) mission (Skofronick-Jackson

et al. 2018; Hou et al. 2014) represents the most ad-

vance satellite precipitation project to date. Combining

both direct (gauges) and remote (radar/radiometer)

measurement techniques, using ground and in-orbit

observations complemented by the state-of-the-art at-

mosphere simulations, the GPM constellation offers

full global coverage of rain and snow every 30min at a

resolution of only 0.18 and a latency of only a few hours.

Freely available precipitation products are implemented

across a spectrum of decision-making scientific tools,

ranging from hydrology to world health. To ensure user

demands for accuracy are met over broad time/space

scales (e.g., nowcasting to climate), GPM precipita-

tion products undergo continuous validation against

the latest reference standards before reaching the users.

In this rigorous process ground-based measurements

(i.e., gauges and ground radars) typically perform well

(Kirstetter et al. 2012) but their satellite counterparts

face a number of challenges (Tang et al. 2014; Meyers

and Ferraro 2016; Ciabatta et al. 2017). While aver-

aged precipitation estimates from satellite precipita-

tion products are generally quite good, their consistency

across specific scales, atmospheric conditions and rain-

ing regimes is still far from the ideal (Petković and

Kummerow 2017; Tan et al. 2017, 2018; Henderson et al.

2018). Currently, GPM passive microwave sensor esti-

mates do not use precipitation type information to

constrain the retrievals.

The challenge in obtaining consistent satellite pre-

cipitation estimates across varying atmospheric condi-

tions can be attributed to the inability of current passive

microwave (PMW) retrievals to properly distinguish

between distinct storm profiles and their corresponding

surface precipitation rates. Due to the nonlinear response

of the atmospheric content (i.e., hydrometeors) to the

upwelling microwave radiation, the individual radiomet-

ric signatures of surface and atmospheric properties are

obscured. Hence the inverse problem of retrieving the

atmospheric contribution from the MW radiance is

underconstrained by nature. In other words, solving an

inverse problem using an incomplete observation

vector results in a deficient estimate of the corre-

sponding state vector.

To demonstrate this effect, instantaneous precipita-

tion estimates from a passive and an active microwave

instruments, mounted side-by-side on board the GPM

core satellite, are compared for two distinct precipitat-

ing regimes—convective and stratiform, as defined by

the GPM radar (details in section 2). Using a full year of

globally observed (668S–668N) precipitation rates over

land, upon removal of the overall difference, GPMPMW

satellite retrieval reveals opposite mean deviations (here-

after referred to as biases) relative to the radar-based es-

timates under the two precipitation regimes. Illustrated in

Fig. 1, the comparison of the distributions of active- and

passive-estimated precipitation rates, for convective and

stratiform cases, suggests a negative 29% bias for convec-

tive regime and a positive 26% bias for the stratiform

cases. A closer inspection of active- and passive-estimated

precipitation distributions confirms that PMW biases exist

over the majority of their characteristic precipitation

rates. Results over ocean, not shown here, yield the

same general conclusions.

A review of the existing literature confirms the impact

of precipitation type on PMW retrieval performance

seen in Fig. 1 even when ground radars are used as a

reference (e.g., Henderson et al. 2017). While both

PMW and radar retrievals certainly contribute to the

bias dipole, the passive microwave’s bias against both

spaceborne and gauge-calibrated surface radar ob-

servations leads us to believe that the bulk of the bias is

coming from the passive microwave retrievals them-

selves. The cause is typically attributed to upwelling

radiation appearing similar for convective and strati-

form regimes within the observation frequencies of

PMW radiometers, despite their distinct rainfall pro-

files. With limited ability to recognize and address the

exact source of subtle changes in the observed radi-

ances, the retrieval recognizes the average value of the

two as the best fit in its minimization function. Con-

sequently, the solution is centered between the two

regimes.

To provide a better insight, the distribution of total

precipitation estimated by the two GPM sensors is given

in Fig. 2 as a function of GPM radar-defined convective

fraction. Clearly, the PMW retrieval (light blue) strug-

gles to match the radar’s (gray) distribution of global

precipitation when sampled by precipitation type.While

this result may in fact be the best performance a PMW

precipitation retrieval has achieved to date, the compar-

ison raises a simple question: Is there any information the

PMW retrieval could use to improve this performance?

Wehypothesize that accounting for the precipitation type

in the retrieval has the potential to generate more
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accurate precipitation estimates. Figure 2 shows a pre-

cipitation fraction distribution of the PMW retrieval

when the current operational algorithm is allowed to use

radar-observed convective fraction information (bright

blue) as an additional ancillary parameter (see section

4a). As expected, a better match to the reference suggests

that the information on convective fraction might be a

key to mitigating PMW biases seen in Fig. 1. However,

radar observations of precipitation from space are sparse,

typically limited to research missions (e.g., TRMM and

GPM) and intended to serve as a reference rather than a

supplement to PMW observations. It is therefore im-

portant to assess if convective/stratiform information

can be inferred from the passive microwave informa-

tion itself. Yet, despite sustained, decades-long effort to

identify a robust link between PMW observations and

convective fraction, only a few regression methods with

modest skill are available. These methods largely utilize

the spatial variability of the brightness temperature (Tb)

of the high-frequency channels (e.g., 30GHz and above).

Thus, the convective fraction of a radiometer field of view

(FOV) is typically calculated by employing 37–89-GHz

signal ratio (the liquid water emission and ice scattering),

spatial variability of 85-GHz Tb depression, or the gra-

dients and standard deviation of 85-GHz Tb adja-

cent pixels (Anagnostou and Kummerow 1997; Grecu

and Anagnostou 2001; Kummerow et al. 2001; Olson

et al. 2001; McCollum and Ferraro 2003; Dinku and

Anagnostou 2006; Gopalan et al. 2010). These tech-

niques still find their applications in operational

PMW retrievals at NASA and NOAA centers (details

in section 4). More recent studies have investigated

the use of lightning information in complementing

the PMW brightness temperatures to improve PMW

algorithm’s ability to discriminate between convective

and stratiform regimes (Wang et al. 2012). While the

results indicate a great potential, especially considering

the expansion of Geostationary Lightning Mapper

FIG. 2. Distributions of total precipitation fraction as a function of

DPR-combined (V5) convective fraction. The x axis ranges from

zero (fully stratiform) to one (fully convective) in 0.2 increments.

Light blue: current operational GPROF (V5) retrieval; gray: DPR-

combined (V5); bright blue: GPROF when provided DPR-

combined information on convective/stratiform flag.

FIG. 1. Comparison of global over land pixel-level distribution of precipitation rate estimates

of GPM’s DPR-combined (gray) and GMI (colored bars) products. (top) Convective and

(bottom) stratiform systems are delineated using a 50% threshold for DPR convective rain

volumewithin theGMI field of view. Results are showing normalized rain fraction as a function

of precipitation rate of one year (September 2014–August 2015) of GPM observations. Note a

different x axis range on the two plots.
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(GLM) coverage in the near future (Goodman et al.

2013), this information is limited to the lightning-active

clouds and era of GLM satellite sensors.

Given the four-decade-long effort in linking PMW

observations and storm morphology, little, if any, room

has been left for a potentially novel physically based

approach to emerge. However, recent advances in deep

learning methods with neural networks may offer per-

haps not new but for the first time fully applicable

models that could better exploit the information content

in PMW observations. This study seeks to investigate

such a possibility through the use of deep learning for

both retrieving precipitation types and improving the

performance of PMW precipitation retrievals.

Defined nearly 70 years ago, artificial neural net-

works (NNs) have been generally labeled as ‘‘black

box’’ mathematical methods of limited application and

performance. Major obstacles to their successful ap-

plication resulted from their extensive need for com-

putational power, and lack of large-enough datasets

that could provide a robust, noise-resistant relationship

between the predictor and predictand. The late 1980s

and early 1990s brought advances in affordable com-

puting hardware and availability of large satellite da-

tasets. This initiated NN satellite applications, leading

to a number of NN schemes present today, mainly

covering image processing, classification, series pre-

diction, and geophysical retrievals in general. A study

of Tapiador et al. (2004) offers an extensive overview

of efforts made in the field of satellite precipitation re-

trievals by the early 2000s. Among those, one retrieval

has found its use in GPM applications: the Precipitation

Estimation from Remote-Sensed Information using Ar-

tificial NN (PERSIANN; Sorooshian et al. 2000). This

approach uses multisource information from satellite

and surface data to establish a relationship between IR

observations and surface precipitation. A more recent

project within the EUMETSAT H-SAF program re-

sulted in a new rainfall rate retrieval algorithm (Sanò
et al. 2018). A demonstration of the potential of the

DNN approach in retrieving precipitation rate is of-

fered by Tang et al. (2018). While some of these proj-

ects have a valuable role in GPM mission, they do not

provide a solution for accurate estimate of precipita-

tion type from PMW observations. Apart from the fact

that retrieving the precipitation type was not their

primary goal, the lack of prediction skill in convective

fraction likely comes from the insufficient depth of

these models. With a recent increased reliance on

graphical processing units (GPUs) for brute-force

computations, NNs can be allowed to search for

deeper, multidimensional nonlinear links between

predictors (e.g., PMW observations) and predictand

(e.g., precipitation type). As a result, modern DNNs

and machine learning (ML) systems allow accurate

modeling of complex dynamical systems. This study

attempts to demonstrate that this approach can suc-

cessfully be employed as a novel PMW precipitation

type characterization to improve retrieval perfor-

mance. While the study is not designed to optimize

the DNN model, it is nonetheless hypothesized here

that a modern DNN is capable of constructing an

accurate precipitation regime prediction model if

provided with a high-quality training dataset con-

sisting of brightness temperatures and the relevant

convective/stratiform classification. TheGPM instrument

suite is seen as an ideal data source for this demanding

task. Being directly affected by the challenges in linking

storms structures and their PMW signatures, the problem

is approached from a surface precipitation rate bias per-

spective (as depicted in Fig. 1).

The paper is organized as follows: details on the in-

struments and data collection, in addition to detailed

description of the DNN model are given in section 2.

Results on the accuracy of DNN model in predicting

convective/stratiform separation are in section 3, fol-

lowed by applications and conclusions in the last two

sections.

2. Data collection and methods

Deep learning neural networks are data-driven

models. The performance of DNNs in terms of accuracy

and their ability to generalize to new inputs depends

on the representativeness, quantity and quality of the

training dataset. To establish a baseline model and

evaluate the performance of the approach we propose a

relatively simple scheme and a widely available satellite

dataset. Detailed descriptions of the datasets and DNN

model are given below.

a. Instruments and data

This study employs 2 years, from September 2014 to

August 2015 and from January to December 2017, of

the GPM core satellite global observations (668S–
668N) to explore accuracy and potential of neural

network approach in retrieving precipitation type

from PMW measurements. Combined observations

from GPM’s Microwave Imager (GMI) and Dual-

Frequency Precipitation Radar (DPR) are used to re-

late brightness temperatures to the convective/stratiform

information.

1) GPM MICROWAVE IMAGER

Since the launch of the GPM core platform in 2014,

the GMI instrument (Draper et al. 2015) serves as a
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calibration standard for PMW conical-scanning radiom-

eters in the GPM constellation. The GMI channel-

dependent FOV decreases from approximately 25 to

6km as the frequency increases from 10 to 183GHz,

leaving a gap in coverage at high-frequency channels

between consecutive, 221-pixel-wide, 13-km apart, scan

lines. Brightness temperatures observed at 13 microwave

channels (10.65H/V, 18.7H/V, 23.8V, 36.5H/V, 89.0H/V,

166V/H, and 183.36 3/7VGHz) are stored inGPM level-

1 standard product (GPM_BASEGPMGMI_XCAL–

V05; GPM Science Team 2016) and freely available

through NASA’s data exchange portals (e.g., https://

storm.pps.eosdis.nasa.gov).

2) GMI PRECIPITATION RATE

The GPM Goddard profiling (GPROF) algorithm

(Kummerow et al. 2015), described in section 4 and

slightly modified for purposes of this study, uses the

GMI Tbs to provide precipitation rate estimates for

most of the GPM PMW observations. The product

used in this study is GMI GPROF standard output for

level-2 data (GPM_2AGPROFGPMGMI; Iguchi and

Meneghini 2016; NASA 2018), freely available through

the same portal as the GMI Tbs.

3) GPM COMBINED PRODUCT PRECIPITATION

RATE AND TYPE

Designed to extract the best from both the passive

and active microwave instruments observations, the

GPM combined algorithm (hereafter DPR-combined;

Grecu et al. 2016) produces the best high-resolution

precipitation estimates from a spaceborne platform.

As such, the DPR-combined product (GPM_2BCMB;

Olson 2017) is used in this study to provide a reference

regarding instantaneous storm structure, namely the

surface precipitation rate and convective/stratiform

class. While the precipitation rate retrieval (Olson and

Masunaga 2016) is developed specifically to use in-

formation from both microwave sensors (active and

passive), the precipitation type in DPR-combined

product relies strictly on GPM’s DPR. The technical

description of the DPR instrument and full algorithm

description can be found in Iguchi et al. (2015), while a

brief overview of its precipitation type classification

criteria is provided here for completeness purposes.

Based on Iguchi et al. (2009), the DPR algorithm clas-

sifies all precipitating FOVs into three major categories—

convective, stratiform, and other—using a detection of a

bright band (BB) as a criterion in so-called vertical and

horizontalmethods (Awaka et al. 2016). In this process, if a

BB is detected, the pixel is considered to be stratiform,

unless the attenuation-corrected reflectivity below the

BB exceeds a threshold of 39dBZ, in which case pixel is

flagged as convective. If no BB is detected, the pixel is

classified as convective if corrected reflectivity anywhere in

the profile exceeds a 39-dBZ threshold. In addition, if the

maximum reflectivity for a given pixel stands out against

the background of the surrounding pixels, or exceeds a

predetermined threshold (i.e., 40dBZ), the pixel and its

first neighbors are regarded as convective. In any other

scenario the pixel is classified as other (this class typically

accounts for less than 10% of all precipitating pixels and is

ignored in this study).

Using both DPR-combined precipitation rate and

type, this study assigns a precipitation type to a GMI

FOV through the volumetric convective fraction (i.e., a

fraction of convective relative to the total precipitation

rate within a GMI FOV). When more than 50% of the

FOV’s total precipitation volume is convective the FOV

is labeled as convective; otherwise the FOV is labeled as

stratiform. No attempt toward improvement of theDPR

classification scheme is made, albeit the known chal-

lenges (Iguchi et al. 2015; Kirstetter et al. 2014).

4) GPM GROUND VALIDATION MULTI-RADAR/
MULTI-SENSOR PRECIPITATION RATEAND TYPE

The GPM Ground Validation Multi-Radar/Multi-

Sensor (GV-MRMS) dataset is used in this study as an

independent reference for qualitative assessment of the

satellite DPR-combined precipitation type product (see

section 4b). MRMS quantitative precipitation estimates

are based on ground polarimetric WSR-88D radar and

automated rain gauge networks (Zhang et al. 2011,

2016) offering products at 0.018 spatial and 2-min tem-

poral resolution over the conterminous United States

and Canada. Extensive gauge correction and quan-

tity filters are applied on MRMS data to generate

GV-MRMS products specifically adapted to satellite

purposes and needs for the highest data quality, as de-

scribed in Kirstetter et al. (2012, 2014). To provide fair

comparisons to DPR-combined product, GV-MRMS

precipitation type flags are grouped into two categories

using the MRMS-provided flags (Zhang et al. 2016):

convective (including hail, convective and tropical con-

vective) and stratiform (including tropical stratiform

and stratiform), and the same volume threshold (50%)

as in the DPR-combined case.

b. Machine learning: Deep neural network, training,
and validation

A common approach to a classification problem

would be to engineer input features for a classification

model (e.g., random forest, support vector machines,

k-nearest neighbor). Such an approach requires a high

level of expert knowledge to hand-craft the features
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(e.g., spatial properties of the input fields; cross-channel

correlations; derived class metrics) while bounding the

space the classification model considers in the search

for a solution. To minimize constrains and biases posed

by hand-crafted features and subjective choices we

opted to employ neural networks, which in contrast can

learn representations of data and use them for classi-

fication. Studies by Meyer et al. (2016) and Tang et al.

(2018) provide an overview of four neural network

employed schemes used in recent years for satellite

rainfall estimates. In this study, the problem of classi-

fying precipitating satellite FOVs is posed as a super-

vised learning problem given the availability of the

data and the ability to prepare and label a large dataset

for the training of the classification algorithm. Specifi-

cally, deep learningmethods are used to establish a link

between the raw GMI channels and two precipitation

classes (i.e., convective and stratiform precipitation

type) using the DPR’s convective/stratiform flag, given

by GPM_2ADPR product (Iguchi and Meneghini 2017),

as a relative reference. In this application of deep

learning, a feedforward neural network is used with fully

connected architecture (LeCun et al. 2015) relying on

TensorFlow API, an open source software library for

machine learning intelligence (Abadi et al. 2015).

Using one year of observations (September 2014–

August 2015) the described DNN model is trained to

predict a precipitation type class. Randomly choosing

24-h intervals of labeled predictors, this 12-month

period is split into training, validation, and test sub-

sets using a 70/20/10 ratio. The input data are chosen

to be 33 5 FOV fields of GMI brightness temperatures

at all 13 channels, centered on the retrieving FOV.

These approximate 20km 3 20km patches of Tbs pro-

vide temperature gradient information that is known to

be well correlated with precipitation type change, while

13 GMI frequencies capture hydrometeor and surface

type variability. The resulting 195 predictors are trained

against FOV class determined by the ratio of total to

convective DPR-combined rain rate within the GMI

FOV. Training is performed separately for land and

ocean surface.

THE ARCHITECTURE

Figure 3 summarizes the architecture of the neural

network: 195 input features, two fully connected hidden

layers, where the first hidden layer has 195 neurons, the

second hidden layer has 96 neurons, and the last layer

(i.e., the output) has 2 neurons as the number of classes.

A hyperbolic tangent (tanh) function is used as the ac-

tivation function for the hidden layers, while a softmax

activation function is used for the output layer. Addi-

tionally, batch norm is applied to the input layer in order

to normalize batch statistics (Ioffe and Szegedy 2015)

and speed up the training. Cross-entropy loss is used as

loss function and coupled with the Adam optimization

method (Kingma and Ba 2014).

Google’s Cloud Machine Learning Engine (https://

cloud.google.com/ml-engine/), ml-engine, is utilized for

the training of the model with both training and vali-

dation data accessible by the framework through the

Google Cloud storage service. The ml-engine hard-

ware configuration was set to a single worker GPU

and a single parameter server, both of Google’s in-

ternal ‘‘standard_type.’’ Hyperparameter constants in-

clude learning rate l and a batch size. A search for

learning rate spans l 2 [5 3 1025, 3 3 1023] and the

batch size 2 [256, 1024]. The ml-engine built-in hyper-

parameter search method (Golovin et al. 2017) and the

accuracy on the validation data to determine these

constants are utilized.

The highest accuracy in training on validation data

was found for l5 9.23 1025 and batch size of 432. The

overfitting is monitored during training via validation

FIG. 3. Fully connected neural network. Thirteen channels of 5 3 3 pixels Tb field,

centered onto the retrieving GMI FOV serve as an input to two hidden layers of 195 and

96 neurons, respectively. Two classes, convective and stratiform, are used as the output in this

classification scheme.
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dataset. Figure 4 shows validation dataset accuracy and

loss, confirming the model does not overfit in training.

The next subsection reports themodel’s performance on

the test dataset.

3. Results

Using a predicted class probability of 50% as a

threshold and testing the model on an independent

12-month period (January–December 2017) dataset, the

model achieved the 87% of overall accuracy in pre-

cipitation type classification (by count) when DPR

retrieval is used as a reference. Summarized results,

given in Table 1, indicate an imbalance between the

two classes with accuracy of 97% for stratiform and

approximately 40% for convective class. This result is

shown to be insensitive when changes are made to

convective-to-stratiform count ratios in the training

dataset. When assessed using the total precipitation

amount by each of the classes, the results suggest the

correctly classified convective scenes account for al-

most 70% of total convective precipitation volume.

This implies that most of the classification errors occur

for relatively light precipitation classified as convective.

The method correctly classifies 98% of stratiform pre-

cipitation volume, with the relatively high Heidke skill

score (HSS; Wilks 2011) of 0.47 and the two subgroups

of accurately assigned classes accounting for nearly

84% of total precipitation.

To provide more insight to the DNN model’s per-

formance, Fig. 5 shows the probability of correctly

predicted class as a function of convective fraction

(left) and precipitation rate (right). With a mean

probability (red diamonds) above 75% and with

75% of FOVs (the bottom of blue box) being above

the 65% probability value, the model shows a robust

performance in respect with both precipitation re-

gime and intensity.

The stability and high percentage of accurately clas-

sified precipitation volumes are strong indicators of

model’s potential to mitigate PMW precipitation type

biases presented in Fig. 1. The following section evalu-

ates the extent of this potential.

4. Applications

This section aims at testing the potential benefit of the

above classification scheme on the passive microwave

retrieval algorithm used in GPM.

a. PMW rainfall retrieval

Developed at NASA’s Goddard Space Flight Center

in the mid-1990s (Kummerow and Giglio 1994), the

GPROF algorithm is used operationally for PMW

precipitation retrieval at NASA and NOAA. NASA’s

Precipitation Processing System (PPS) runs the most

recent GPROF Version 5 (V05) algorithm to process

PMW observations from a constellation of cross-track

(e.g., Kidd et al. 2016) and conical scanning sensors,

including GMI, SSMI/S (Kunkee et al. 2008), AMSR2

(Shimoda 2005), ATMS (Muth et al. 2005), MHS

(Edwards and Pawlak 2000), and others (see the

appendix for a full list of acronyms and abbrevia-

tions). NOAA’s operations rely on an older GPROF

version (2010v2) to retrieve AMSR2 precipitation

rates (Gopalan et al. 2010; Meyers et al. 2015). Only

the most recent version of the algorithm is detailed be-

low, while the evolution of the retrieval and differences

FIG. 4. Accuracy (red) and loss (blue) on the validation dataset for over land training.

TABLE 1. Accuracy of DNN model in predicting convective/

stratiform class over land using GMI observations from January

to December 2017. Numbers within each category provide total

counts of GMI FOVs (percentages given in parentheses).

Observed

convective

Observed

stratiform Total

Retrieved convective 29 152 44 705 73 857

(39%) (61%) (20%)

Retrieved stratiform 5104 299 859 304 963

(2%) (98%) (80%)

Total 34 256 344 564 378 820

(9%) (91%)
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between the two versions are documented in work of

Kummerow et al. (2015).

GPROF utilizes a Bayesian approach that employs a

priori information on the relationship between hydro-

meteor profiles and corresponding radiances. Using the

DPR-combined algorithm as a primary source of pre-

cipitation profiles, coupledwith radiative transfermodels,

GPROF computes Tbs for any sensor that forms part of

the GPM constellation (Kummerow et al. 2011). The al-

gorithm first groups the entire a priori database by using

ancillary information (TPW, surface type, and 2-m

temperature) to subset the database by the observed

large-scale conditions. As part of this process, surface

types are defined using SSM/I observed emissivity cli-

matology (Aires et al. 2011) updated daily by NOAA’s

AutoSnowproduct (Romanov et al. 2000),whileTPWand

2-m temperature come from reanalysis datasets such as

ECMWF (Dee et al. 2011) and JMA’s global analysis

(GANAL; JMA 2000). The database elements are aver-

aged through the Bayesian scheme where DPR-combined

precipitation rates are assigned a weight proportional to

their respective probability given by Eq. (1):

r
r
5
�
i

r
i
w

i

�
i

w
i

, where w
i
5 expf20:5[T

b
2T

b_ f
(r

i
)]TS21[T

b
2T

b_ f
(r

i
)]g, (1)

here, i is an element of the a priori database, S is the Tb

error covariance (to account for both forwardmodel and

instrument errors), Tb is the FOV observed brightness

temperature, and Tb_ f(ri) is ri-associated brightness

temperature while rr is the retrieved precipitation rate.

This approach is relatively easy to apply to any PMW

sensor and ensures preservation of the global precipi-

tation rate distribution given by the a priori reference

(e.g., DPR-combined product). However, when a sensor

is incapable of distinguishing between radiometri-

cally similar scenes of various precipitation rates, the

Bayesian technique gives equal weight to database

elements of mismatching hydrometeor profiles. Con-

sequently, the error introduced to the instantaneous

precipitation rates becomes a function of precipitation

type (as seen in Fig. 1). Thus, if the averaging is limited

only to a priori database elements of similar precipitation

types, it should be possible to decrease, if not fully

eliminate, the biases highlighted in Fig. 1. Before testing

for potential of theDNNmodel to contribute toward this

goal, a qualitative evaluation of the model’s ability to

predict the convective/stratiform flag is presented.

b. Retrieving convective fraction from PMW
observations

Using an example of the squall line observed over the

Midwest U.S. on 13 July 2015 (Fig. 6), a performance

of the DNN model is compared to that of ground and

satellite retrievals. Figure 6 offers a side-by-side com-

parison of the system’s precipitation type partitioning

observed by GPM core satellite and ground radar net-

work at 0720 UTC. The same 50% convective volume

threshold is applied to delineate two precipitation clas-

ses [note: in GPROF case, Eq. (1) defines both total and

FIG. 5. Probability of predicted class as a function of FOV’s (left) convective fraction (by volume) and (right)

precipitation rate for January–December 2017 over land globally. Box and whiskers denote quintiles of FOV

within a class (i.e., 0%, 25%, 50%, 75%, 100% marks); the mean value for each bin is marked by red diamond.

Convective fraction ranges from zero (FOV fully stratiform) to one (FOV fully convective).
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FIG. 6. A squall line over the Midwest U.S. on 13 Jul 2015. Precipitation rate by (top left) DPR-combined and (top

right) Multi Radar Multi Sensor network. Precipitation type by (middle left) DPR-combined and (middle right) Multi

Radar Multi Sensor network. Precipitation type by (bottom left) GPROF algorithm and (bottom right) DNN.

Black/white lines denote the edges of the DPR swath for the GPM core-satellite overpass (orbit number 7789) at

0720 UTC.
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convective precipitation, using total and convective DPR

rate, respectively]. Qualitative analysis of precipitation

rate and type retrieved by GV-MRMS, DPR-combined,

GPROF, and DNN suggest the following: 1) DPR-

combined and GV-MRMS precipitation rate and type

show good overall agreement but some disparity is

present; 2) while GPROF algorithm captures the gen-

eral structure of the squall line it largely overestimates

the convective portion of the system; 3) DNN model

outperforms the PMW retrieval showing only minor in-

consistencies with both ground and satellite references.

Upon closer inspection of Fig. 6, it can be noted that

the DNN model does not assign a convective flag to the

area on the left side of the convective bow (468N,

90.58W)—the only area over which ground and satellite

radars show significant disagreement. It is likely that this

region is erroneously labeled as convective by the DPR,

and does not have the typical spectral signal of other

DPR-defined convective regions. While investigating

this behavior (of the DNN perhaps outperforming the

training data in this particular case) is beyond the scope

of this study, the more robust result is that GPROF

without DNN largely overestimates the convective

portion of the storm, which directly links to Fig. 1 and

the precipitation type bias. Given the nature of con-

vection, one can typically expect higher precipitation

rates over convective pixels relative to the stratiform

ones. Therefore, the erroneous assignment of convec-

tive type over stratiform region by the GPROF retrieval

(Fig. 6 bottom left) should, in general, lead to an over-

estimation of stratiform scenes. On the other hand,

as long as the Bayesian averaging allows stratiform

database elements to be included in the retrieval of

convective pixels, one should expect an underestimation

of precipitation rates. The current GPROF algorithm

does not have an effective mechanism to separate the

two, resulting in the precipitation type bias dipole, as

confirmed by Fig. 1. To test if the performance of the

DNN model seen in Fig. 6 can mitigate these biases, the

model is implemented directly to the GPROF retrieval

and tested on a longer time period of observations.

c. Mitigating PMW precipitation bias via retrieved
convective fraction

To test whether the DNN model’s precipitation type

retrieval can offer complementary information to the

GPROF algorithm, the model is implemented directly

into the retrieval’s scheme. In this two-step process,

using Tb vectors as an input, the DNN model first

assigns a convective/stratiform flag to each element of

GPROF’s a priori database. Then, in the retrieving pro-

cess, the same DNN model employs observed brightness

temperatures to assess each FOV precipitation type.

Classified either as convective or stratiform, the FOVs

are assignedBayesian average precipitation rates through

the Eq. (1) but now considering only database elements

of the same precipitation type. In other words, DNN

output is used to additionally constrain the a priori da-

tabase and eliminate nonrelevant inputs in Eq. (1). The

results are summarized in Figs. 7 and 8 and Table 2.

Figure 7 presents the same analysis shown in Fig. 1,

where global over land GMI observations for the

12-month period are separated into convective and strati-

form types, but in addition to the DPR-combined (gray;

reference) and GPROF-GMI algorithm (light colors),

it displays the DNN-adjusted result (bright colors).

FIG. 7. Comparison of precipitation distributions of DPR-combined (gray; reference),

GPROF V05 (light blue), and GPROF-adjusted (bright blue) retrievals for (top) convective

and (bottom) stratiform scenes. Note: the range on the x axes differs in the two plots.
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Clearly, the adjusted product is a better match to the

reference. The majority of the precipitation rate spec-

trum has the rain fraction of the adjusted product much

closer to that of DPR-combined. Exceptions are con-

vective rates below 1mmh21 and stratiform rates above

5mmh21. However, these account for less than a tenth

of the overall bias and in fact do not reflect DNN-

induced errors. Their origin lays in the Bayesian scheme

itself, where the solution of Eq. (1) always leans toward

the mean value of averaging elements. Since these pre-

cipitation rates are common for both precipitation types,

the link between the precipitation type and Tb is rather

weak and too ambiguous for DNN to extract from Tb

vector alone. Consequently, the bias centers around the

peak of precipitation fraction.

Following the approach in section 1, the DNN effect

on the PMW retrieval is tested through comparison of

total precipitation fraction distributions. The analysis

presented in Fig. 2 are repeated and shown in Fig. 8, only

this time the optimal PMW retrieval is replaced by

that of the DNN-adjusted retrieval. Showing consistent

improvement and reducing the total precipitation mis-

classification, the comparison clearly confirms the po-

tential DNN-model has in reducing precipitation type

bias of PMW retrievals.

To test the robustness of this result, the PMW retrieval

is extended to a full domain of the GPM core satellite

(668S–668N). Table 2 summaries the effect of the DNN

model implementation on the bias and correlation

coefficient for the two precipitation types over both

land and ocean for the aforementioned 12-month

period. On average, the precipitation rate bias is re-

duced by a factor of 2 (i.e., 45%–50%) while the cor-

relation coefficients remain stable.

Interestingly, when combined, Figs. 7 and 8 suggest

the DNNmodel may in fact be close to the optimal. The

model’s impact to GPROF performance is poor only for

precipitation rates common to both convective and

stratiform regimes, where the link between DPR pre-

cipitation type and Tbs is rather weak and ambiguous.

While this requires further investigation, a comparison

of the accuracy of the retrieved precipitation type by the

DNN model and current state-of-the-art PMW algo-

rithm is considered next. Table 3 summarizes assess-

ments of convective/stratiform separation given by

NOAA’s (GPROF-2010) and NASA’s (GPROF V05)

operational PMW precipitation retrievals, using once

again the DPR-combined product as a reference. To

maximize each scheme’s performance, all threemethods

consider only the domain they have been trained for and

use the same 0.5 threshold of convective to total pre-

cipitation ratio as a delineator between convective and

stratiform FOVs. Following Gopalan et al. (2010),

GPROF-2010 is assessed over tropical land (208S–
208N), while the other two consider land coverage of

the GPM core satellite. Percentage of both volume and

counts relative to the number of predicted elements per

category is given in addition to the HSS using the same

approach as in section 3. The results suggest that, when

the DPR is used as a reference, the DNN model out-

performs the other two in all aspects except in the

FIG. 8. Total precipitation fraction for year 2017 as a function of

convective fraction as retrieved byDPR-combined (reference; gray),

original (light blue), and adjusted (bright blue) PMW retrieval.

TABLE 2. Bias and correlation coefficients of the original (V05) and DNN-adjusted GPROF precipitation rates retrieved globally

(668S–668N) during 2017.

Bias (%) Correlation coefficient

Convective Stratiform Convective Stratiform All

Land

GPROF V5 229 25 0.64 0.67 0.59

GPROF w/DNN 216 14 0.65 0.69 0.61

Ocean

GPROF V5 29.0 7.2 0.86 0.92 0.89

GPROF w/DNN 24.5 3.6 0.87 0.93 0.90
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accuracy of the convective class. However, given the

HSSs and percent of total precipitation volume under

the convective class, the DNN model has the best po-

tential for addressing precipitation-type related biases

of the PMW retrievals.

5. Summary and conclusions

The ability of deep learning approaches in retrieving

precipitation type from passive microwave observations

is tested using GPMmission radiometer (GMI) and radar

(DPR) observations. A fully connected DNN model sug-

gests significant improvement in detection skill of pre-

cipitation type over the existing operational PMW

schemes (i.e., GPROF) when trained on collocated

DPR-combined precipitation types and GMI’s 13-channel

Tb vectors. Tasked to reproduce DPR-based classification

of precipitating FOVs (into convective and stratiform

scenes), the model correctly assigns a class to 84% of total

precipitation volume, with overall accuracy on the scenes’

type of 87%. This is achieved with the median probability

of class prediction value exceeding 75% mark at all pre-

cipitation rates for all convective fractions. Compared to

some state-of-the-art satellite passive microwave re-

trievals, this result shows a 10%–50% improvement in

both accuracy and precipitation volume within each of

the two categories. The model reduces precipitation

rate bias associated with convective and stratiform

precipitation in the GPM operational PMW algorithm

by a factor of 2 while preserving the correlation with

reference precipitation rates, and is insensitive to sur-

face type variability.

The objective of this study was to simply demonstrate

the capability of DNN models, rather than optimize a

specific model for applications to the GPM radiometer

algorithm. The above results allow us to conclude that the

deep learning neural network approach for detection of

convective precipitation class from satellite passive mi-

crowave measurements has an outstanding application

potential. Further improvements could be sought through

more sophisticated neural network models, such as con-

volutional approach that could potentially allow for better

extraction of spatial information content from the

Tbs fields. Adding input features, such as large-scale

environment (e.g., Petković and Kummerow 2018) and

precipitating system features (e.g., Liu et al. 2008) would

likely further strengthen representation of the complex

link between DPR precipitation type and PMW Tbs re-

lying on information content beyond the observed FOV.

Besides considering more and better predictors to

detect convection, another improvement would address

current assumptions in the DNN scheme and its appli-

cation in the GPROF Bayesian framework: accounting

for inherent uncertainties in the DPR precipitation

classification. Currently, a convective precipitation flag

is assigned to anyGMI FOVwhenmore than 50%of the

FOV’s DPR total precipitation is flagged as convective.

The explicit consideration of uncertainties and mixtures

of convective and stratiform precipitation within each

FOV would be more consistent with the primary pre-

cipitation type information and the Bayesian formalism.

It would seamlessly address the challenge of ambiguous

link between the precipitation types and Tb and remove

potential biases arising from a binary classification. Ul-

timately, these contributions will pave the way toward

more accurate precipitation estimation at local to re-

gional scales by mitigating the PMW precipitation re-

trieval error dependence to precipitation types. These

benefits are expected to propagate to larger scales, for

example, over ENSO cycles. It will enable more reliable

studies of the climatology of global convection and its

evolving impact onEarth’s water and energy cycles under

a changing climate.
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APPENDIX

List of Acronyms

AMSR2 Advanced Microwave Scanning Radi-

ometer 2

ATMS Advanced TechnologyMicrowave Sounder

API Application programming interface

TABLE 3. Accuracy of predicting precipitation type from PMW observations. Comparisons for correctly predicted FOV types by count

and precipitation volume for year 2017, globally, over land. The bold font highlights the winning run in each of the categories.

Total precipitation volume (%) By count (%)

Convective Stratiform Total Predicted Convective Stratiform Overall HSS

GPROF V05 62 84 74 50 83 76 0.30

GPROF 2010 55 79 63 14 56 36 0.44

DNN model 67 98 84 39 98 87 0.47
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BB Bright band

DNN Deep neural network

DPR Dual-frequency precipitation radar

ECMWF European Centre for Medium-Range

Weather Forecasts

FOV Field of view

GANAL Global analysis

GLM Geostationary Lightning Mapper

GMI GPM Microwave Imager

GPM Global Precipitation Measurement

GPROF Goddard profiling algorithm

GV-MRMS Ground Validation–Multi Radar/Multi

Sensor

HSS Heidke skill score

IR Infrared

JMA Japan Meteorological Agency

MHS Microwave Humidity Sounder

ML Machine learning

NASA National Aeronautics and Space

Administration

NN Neural network

NOAA National Oceanic and Atmospheric

Administration

PERSIANN Precipitation Estimation fromRemotely

Sensed Information usingArtificial Neural

Networks

PMW Passive microwave

SSMI/S Special Sensor Microwave Imager/Sounder

Tb Brightness temperature

TMPA TRMMMultisatellite Precipitation Analysis

TPW Total precipitable water
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